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Spatial Search and Fishing Location Choice:
Methodological Challenges of

Empirical Modeling

Martin D. Smith

Recent work in ecology emphasized the spa-
tial patchiness of marine resources. Fish and
shellfish populations often occur in clumps
or discrete patches of habitat with differ-
ent population levels and dynamics in each
patch. Patches are linked through a set of
complex biological and oceanographic fac-
tors. This new view has given rise to spatial
marine management proposals, including per-
manent marine reserves and rotating spatial
closures. Reserve proposals are particularly
popular among ecologists because closed
areas can presumably augment the biomass in
areas that were overharvested due to stochas-
tic shocks or poor management practices.
Little is known, however, about how indi-
vidual harvesters would respond to spatial
management. Economists can contribute sub-
stantially to debates about spatial policies by
building models that explain spatial behavior
of commercial fishers.1

Beliefs about profitability of different loca-
tions are the most important determinants of
location choice for commercial fishing, but
they are unobservable. Differences in prof-
itability are driven, in part, by the spatial het-
erogeneity of the resource. In many fisheries,
individual harvesters make discrete location
choices across space on a daily basis. This
paper addresses the connections that bridge
fishers’ observed data, the beliefs that the
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1 What is needed is a model that predicts spatial responses to
policies that have never been implemented. So, a pure time-series
approach would suffer from a spatial Lucas critique. Though a
complete structural model of the bioeconomic system is unneces-
sary, for policy analysis we do need a spatially explicit behavioral
model that predicts responses to changes in observables.

fishers formulate, and the resulting location
choice behavior. The crux of the modeling
problem is that we, as analysts, observe indi-
vidual discrete choices and we observe the
location-specific catch and revenue histories
of individuals (information or data), and yet
we do not really know how individuals pro-
cess their data into beliefs. In these circum-
stances, is it possible to make inferences
simultaneously about behavioral responsive-
ness and information processing? Can we use
behavioral models to test hypotheses about
search behavior? Is it possible to determine
both how harvesters share information and
how this sharing affects behavior? To address
these questions, this paper looks at three
aspects of information processing: the choice
between structural and reduced-form models,
information decay, and complexities of spa-
tial search and information sharing.

The Choice between Structural and
Reduced-form Models

Typical location choice models begin with a
random-utility model (RUM) based on the
expected utility hypothesis. Indexing individ-
uals by i, fishing locations for j , and time
(choice occasions) by t, utility for an individ-
ual is defined as

Uijt = vijt + εijt(1)

= f(Xijt; �)+ εijt

where � is a parameter vector and Xijt con-
tains moments of a wealth distribution that
varies across individual, site, and time. This
is essentially where Bockstael and Opaluch
began in their article that launched discrete
choice modeling of commercial fisheries.2 To

2 Other authors who applied discrete choice techniques to com-
mercial fishery supply include Eales, Eales and Wilen, Campbell,
Dupont, Ward, and Sutinen, Evans, Smith, and Wilen, and Hol-
land and Sutinen.
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study choices among different commercial
fishing activities, these authors assumed a
logarithmic utility function on wealth and
expressed indirect utility as a function of
mean returns and variance of returns.

To simplify, assume that indirect utility is a
linear function of mean profits and variance
of profits as

vijt = αE[W0 +Rijt − Cijt](2)

+βVar[W0 +Rijt − Cijt]

where Rijt and Cijt are, respectively, revenues
and costs for individual i in location j at
time t, and W0 denotes an individual’s wealth
outside the fishery. In most instances, costs
are known deterministic functions for the
resource harvester. Suppose that costs are a
linear function of distance from an individ-
ual’s port to the site (dij ) and a parameter γit,
which reflects changing fuel prices and indi-
vidual harvester opportunity costs of time.
Equation (2) thus reduces to

vijt = αW0 + αE[Rijt](3)

− αγitdij + βVar[Rijt]�

Assuming that γ does not vary across individ-
uals or time and recognizing that αW0 simply
rescales indirect utility (i.e., it neither varies
across choice nor varies across time for an
individual), the RUM can be expressed as

Uijt = αE[Rijt]+βVar[Rijt]+γ∗dij+εijt(4)

where γ∗ = −αγ. The simplest way to esti-
mate this model of location choice is to
assume εijt are identically and independently
distributed (i.i.d.) type I extreme value and
apply McFadden’s (1974) conditional logit.

Since the original Bockstael and Opaluch
formulation, developments in the discrete
choice literature enabled analysts to con-
sider more sophisticated models.3 Although
these new models add interesting dimen-
sions to the behavioral modeling problem,
some unresolved issues still remain about
the original problem. In particular, what data
go into the expected revenue and variance
of revenue terms? These terms are belief
variables, reflecting individual agents’ views
about expected payoffs of different fishing

3 For instance, simulation-based estimation allows one to model
formally mean-variance preference heterogeneity across differ-
ent industry participants. McFadden (1989), Pakes and Pollard,
and McFadden and Train are important papers that develop
simulation-based discrete choice econometric techniques.

activities. As analysts, we place ourselves
inside the minds of the decision makers and
we make assumptions about these beliefs; but
in truth, we do not know precisely what these
beliefs are and how they are formed. Thus,
the most critical variables that drive choice
are unobservable in spite of the fact that we
observe individuals’ information.

There are two ways to deal with the
unobservability problem: (1) structural mod-
eling of the bioeconomics and (2) reduced-
form approaches. The idea of a structural
model is to embed system dynamics into the
expected revenue and variance computations
and then to derive an econometric speci-
fication that is a function only of observ-
ables. A reduced-form method, as in many
time-series problems, seeks to forecast rev-
enue belief variables without modeling the
structural forces that change them from one
period to the next.

A structural model of fishing revenues
must link prices, catch, and the evolution of
biomass in each fishing location. Suppose that
price (p) and hours per fishing trip (h) are
constant, and suppose further that catch is
proportional to fishing effort times biomass
as in the standard Schaefer model. Thus, rev-
enues are

Rijt = pqhXjt(5)

where Xjt is unobservable biomass in loca-
tion j at time t, q is a catchability coefficient.
Now suppose that biomass evolves according
to the simplest possible process, or

Xjt = δXjt−1 −
n∑
i=1

Hijt(6)

where δ is a combined growth, survival, and
recruitment parameter, Hijt is individual i’s
harvest at the site, and there are n harvesters.
By recursive substitution of (6) into itself, we
obtain

Xjt = δtXj0 −
t∑

k=0

δk
( n∑

i=1

Hijt−k

)
�(7)

Even with such simplifying assumptions, to
estimate the model one must assume that
δk is close to zero because initial biomass is
unobserved, or one must do an infinite recur-
sion and truncate it in some ad hoc way.4

4 A more pressing problem with this particular structure, how-
ever, is that biomass tends toward zero in the steady state with-
out harvesting if δ < 1, and biomass explodes in the long run
if δ > 1.
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Although the state equation in (6) lacks real-
ism, the problem quickly becomes intractable
when one includes a more suitable popula-
tion state equation. With a nonlinear state
equation for biomass, recursive substitution
would lead to an extremely complicated non-
linear function of past harvests.5 Another
fundamental problem with structural bioe-
conomic modeling as a basis for behavioral
modeling is that it assumes that individual
harvesters know aggregate time and location-
specific harvest. As analysts, we see this infor-
mation ex post, but harvesters may not have
access to it when they make their daily loca-
tion choices. Structural bioeconomic model-
ing thus may be a useful means to estimate
biological parameters and aggregate industry
responses to trends in the fish stock but does
not seem promising to study individual har-
vester decision making.

Reduced-form approaches, in contrast,
avoid some tractability problems by treating
revenue as stochastic and by ignoring bioeco-
nomic processes that produce its determinis-
tic components. Since expected revenues are
composed of price and catch expectations, it
would be naive to abandon structure where it
can be incorporated easily. Price is known in
some fisheries before location decisions are
made, in which case the stochasticity is com-
pletely contained in the harvest variable such
that6

E[Rijt] = ptE[Hijt](8)

and

Var[Rijt] = (pt)
2 Var[Hijt]�

Still other fisheries operate to produce both
price and catch uncertainty on a continuous
basis.7 Hence, it might be sensible to assume
that a single random-revenue variable con-
tains all of the randomness.

Specification of a reduced-form model
implicitly assumes a hypothesis about how

5 For example, after just two periods of recursion with the
Schaefer model, the expression for biomass is an eighth-order
polynomial that contains cross-product terms of unobservable
lagged biomass and lagged harvest. Stochastic biological shocks
compound the problem further by introducing cross-product
terms of unobservable shocks, unobservable biomass, and lagged
harvest.

6 For example, in most Alaskan salmon fishing, trips are made
after a contract has been signed in which the processor guaran-
tees a certain price.

7 In the sea urchin fisheries in both California and Maine, prices
are determined in part by quality, which is not measured until
the buyer has processed the urchin and evaluated roe content.

agents transform data into beliefs about
means and variances. Imagine the following
laboratory experiment. There are two urns,
each with an unknown number of balls that
have different numbers printed on them. An
individual subject draws T balls from each
urn (say with replacement), but she is neither
told how many total balls are in each con-
tainer nor told anything about the distribu-
tion of ball numbers. Then, the experimenter
tells the subject that she will be allowed to
select a ball from one of the urns and will
receive the amount shown on the ball in cash.
The subject then selects one of the urns and
receives her payoff. Now, if we run this exper-
iment for n subjects, how could we build
a behavioral model of choice? At the end,
the experimenter has each individual’s data
and knows each individual’s choice. How can
we test hypotheses about the processes by
which the individuals make their selections?
If we believe the expected utility hypothe-
sis discussed above, we might first calculate
the sample mean and the sample variance of
each individual’s draws, then we might plug
these into a RUM, and we might estimate a
logit or a probit regression. Denoting individ-
ual draws from urn j as Rijt� i = 1� � � � � n,
j = 1� 2, and t = 1� � � � � T , the data for the
discrete choice model would be

E[Rijt] = �Rij =
1
T

T∑
t=1

Rijt(9)

and
Var[Rijt] = s2

ij

= 1
(T − 1)

T∑
t=1

(Rijt − E[Rijt])
2�

The experimenter and each subject have the
same information, and all of the information
relevant for choice is contained in each sub-
ject’s sequence of draws. What matters for
choice, however, are individuals’ beliefs about
the parameters of the stochastic process and
uncertainty about the parameters.

For example, suppose we alter the exper-
iment and we allow a different number of
draws from each urn, Tj . An individual with
identical sample means and variances for the
two urns might be expected to choose the
urn with more draws simply because she has
more certainty about its distribution. Thus,
the relevant variance that should be included
in the discrete choice accounts for the sam-
pling error as

Var[Rijt+1] = s2
ij

(
1 + 1

Tj

)
�(10)
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If harvesters really make mean-variance
trade-offs, ignoring sampling error may over-
state the individual’s risk aversion and may
neglect the value of information. There is
always variation in observed ex post revenues
due to the stochastic nature of revenues, but
with known parameters, there is no value to
having more information. From a harvester’s
perspective, it may not matter whether the
variance comes from the sampling error or
from the intrinsic stochastic component of
the revenue process.

In the real world, harvesters make
repeated decisions and observe new informa-
tion before each decision in the sequence.
To extend the laboratory analogy further,
suppose the subject chooses an urn again
after observing the outcome of the choice
round, i.e., after seeing the number on the
ball that was drawn. Suppose these decisions
are repeated so that the agent continues to
collect information as the experiment pro-
ceeds. Then, mean and variance beliefs on
each day would be updated based on the pre-
vious draw.8

The model described above leaves unan-
swered the question of what a harvester
might do with no information, i.e., no past
observations, on the revenue distribution in
some patches. In the laboratory analogy,
under what circumstances would one ever
choose an urn from which she has never
sampled? The only explanation for such a
choice, barring explanations based on irra-
tional behavior, would be that the agent has
some prior belief about the urn before sam-
pling from it. As such, a Bayesian approach
can be a useful tool to model the information
of harvesters. With this story, harvesters have
priors on different locations, make choices
about where to go, collect information in
the process, update their priors to form a
posterior distribution, and repeat the deci-
sion on the next choice occasion. In the
Bayesian lingo, the beliefs about location-
specific revenues would be means and vari-
ances of the posterior predictive distributions,
i.e., the means and variances of a forecast
draw from the posterior.

Mangel and Clark, Mangel, and
Swierzbinski apply an analytical Bayesian
framework to information updating in ocean

8 With a linear model, this would simply be equivalent to
Kalman filtering. Without autocorrelation, this is equivalent to
recomputing the ordinary least squares estimator after each
observation for each urn.

fisheries. They model catch as a Poisson pro-
cess with uncertainty about the parameter
λ modeled with a gamma distribution (with
parameters a and b). Harvesters have a prior
distribution on λ, fish in a location, collect
data on λ, and form a posterior using Bayes
rule. Denoting catch as C , the following
describes the probabilistic framework:

Prob(C) = 1
C!

λC� C = 0� 1� � � � �(11)

and

Prob(λ) = ab

#(a)
λa−1e−bλ� λ > 0�

Since gamma is a conjugate prior for a
Poisson, the posterior distribution for catch
given the catch histories (Ct� t = 1� � � � � T )
is distributed gamma(a+∑T

t=1 Ct� b + T).
Moreover, one can decompose the variance
into variance of the underlying stochastic
process on catch and variance attributed
to uncertainty about the parameters. This
approach can be extended easily to model
individual sites with different Poisson
distributions.

A major drawback of this analytical model
is that it is a single parameter model that
imposes equal mean and variance of the
data-generating process.9 A realistic empiri-
cal model requires at least a two-parameter
distribution on revenues: one parameter for
scale and the other for location. Added real-
ism, however, comes at a cost. One must
commit to a two-parameter probability dis-
tribution on continuous and positive data.
Given that distributions on revenues may
also be skewed, it would help to choose a
distribution that has this flexibility as well.10

Two suitable distributions are gamma and
log-normal. Both are potentially skewed dis-
tributions on strictly positive and continuous
data, but neither distribution has convenient

9 Another drawback is the difficulty of choosing a prior dis-
tribution. This is often a criticism of Bayesian approaches that
comes from the frequentist camp. What is different about this
setting is that choice of a prior is one step removed from the
behavioral model. Bayesians typically evaluate the sensitivity of
their results to the choice of a prior, but it becomes a consider-
ably more difficult task when the results are essentially data that
enter into another statistical model. Nevertheless, one can ame-
liorate this problem to some extent by choosing a diffuse prior.

10 Location-specific revenue histograms in the California red sea
urchin fishery show long right tails.
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conjugate priors for both location and scale
parameters.11

Although the specification problem
becomes more difficult without conjugate
priors, Markov chain Monte Carlo simula-
tion allows us to entertain the possibility
of numerous distributions. The best known
of these techniques is the Gibbs sampler.12

For each location, individual, and choice
occasion, the analyst would run a separate
simulation to generate the belief variables
for the behavioral model. This procedure is
becoming more possible with advances in
computational power, but application of the
Gibbs sampler to a fishery with daily data,
multiple sites, and numerous individuals or
boats is still a daunting task.

Information Decay

Any systematic examination of how infor-
mation affects location choices must con-
sider information decay. The previous section
discussed choice models when the revenue
distribution is fixed. Unfortunately for the
analyst of fisheries data, repeated draws
on location-specific revenues are not com-
ing from the same distribution. We would
expect, in fact, that the underlying probabil-
ity density is changing over time, since mar-
ket conditions, population distributions, and
policy settings change over time. The abun-
dance in each patch should vary differen-
tially as harvesting, growth, natural mortality,
and recruitment occur. In addition, in many
fisheries prices vary as world markets and
exchange rates change, as substitute prices
and incomes change, and as quality of landed
product changes. In the California sea urchin

11 Log-normal is conjugate with itself if the scale parameter is
fixed and known but not if it is unknown. Unfortunately, there is
no reason to make such a strong assumption about the variance
of revenues in the case of spatial search in fisheries. See Kaufman
for further discussion of the log-normal distribution in Bayesian
analysis.

12 The idea is to derive a full conditional distribution for each
parameter, i.e., a distribution that combines the prior and the
data assuming that the other parameter is known. Then, one can
simulate a sequence of draws from these conditionals that even-
tually converges to the joint distribution. Convergence to the
joint distribution may require many draws, and even if the joint
distribution is achieved quickly, the analyst would need to use
many draws in the simulation to limit simulation noise. Draws
from the joint distribution can then be used to calculate means
and variances. One added complication is that there is a burn-in
phase of unknown length, which is a period of nonstationarity at
the beginning of a sample. So, every time one applies the Gibbs
sampler, it is necessary to identify the burn-in phase and to dis-
card the records in this period. For more discussion of the Gibbs
sampler, see Gelman et al.

fishery, for example, quality varies intrasea-
sonally due to spawning cycles and varies
interseasonally due to the changing abun-
dance of food supplies.13 Thus, information
about abundance, quality, price, and hence
revenues decays over time. It is not surpris-
ing that the Bayesian updating analytical lit-
erature on search in fisheries ignored this
problem.

Although the information decay process
may not be known precisely, past informa-
tion presumably carries some signal about
future conditions. How do we think indi-
viduals transform past observations on rev-
enues into beliefs about future revenues? A
return to the experiment with urns and balls
will help to clarify the problem. Suppose
that after each subject collects samples, the
experimenter pours more balls into each urn.
The balls that were already in the urn are
still there, but an unknown quantity of new
balls with an unknown distribution has been
added. Then the subject is asked to choose
between the urns. How does she weight the
information that she collected given that
the distributions of balls in the urns have
changed? Suppose that after making a choice,
the experimenter again pours more balls into
each urn, and the subject is asked to choose
again. Now what information does the subject
use to decide? Clearly, the old information
has decayed more than the new informa-
tion, but is the old information worthless?
Whereas without information decay observa-
tions are weighted equally, here one must
choose to truncate the sample period or to
apply weights that decline with age.

If one truncates the sample period, one
chooses a τ such that observations prior
to (t − τ) are not considered in revenue-
density estimation. However, there are no
clear guidelines on how to choose τ , and once
a τ is chosen, the revenue moment estimates,
i.e., belief variables, enter into the behavioral
model as if they were data. So, identifying
the optimal truncation length is a difficult sta-
tistical problem because the different mod-
els are nonnested. Another problem is that
some patches have too few observations to
estimate the revenue parameters in most real
world situations. For instance, at sites with
minimal fishing effort, there may be long
stretches of time in which no one chooses to

13 Abundance of kelp, in particular, affects quality and over-
all abundance of California sea urchin. Kelp abundance, in turn,
depends on urchin populations, occeanographic conditions, and
sometimes human activities.
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fish there, and the chosen truncation length
could lead to a paucity of data. Alterna-
tively, one could choose a bigger τ and have
more data available, but then it would be
harder to justify equal weights for the sample
observations.14

Imposing information decay has the advan-
tage of there always being enough data to
estimate belief variables because observa-
tions are never discarded from the sample
as time passes.15 The disadvantage is that
old information always has some impact on
the current revenue assessment. Neverthe-
less, old information receives less weight than
new information. One way to impose this
structure is to assign geometrically declining
weights. Consistent with an adaptive expec-
tations model of revenues, this is precisely
what Bockstael and Opaluch do for expected
revenues. Two drawbacks are the difficulty
of estimating the weighting parameter and
the ultimate need to truncate the lag for
estimation.

An alternative information-decay approach
is to treat the problem as a regression of
revenue on a constant with a heteroskedas-
tic error. The form of the heteroskedasticity
is imposed to reflect decaying information on
revenues in a patch. For instance, the variance
of an observation might grow proportionally
to the number of periods that observation
is distant from the present. The model can
be estimated using generalized least squares
(GLS) with more weight placed on recent
observations. One virtue is that periods with
no data do not prohibit one from perform-
ing estimation. The expectation of revenues is
simply the current estimate for the mean. The
variance is a bit more complicated, incorpo-
rating variance from the error and variance
of the estimated mean. Nevertheless, it fol-
lows from the approach in equation (10), sub-
stituting the sum of the weights for Tj and
using the GLS s2.

Another method of dealing with the evolu-
tion of a stochastic process is to apply time-

14 Adopting a truncation approach, Holland and Sutinen use
ten-day average lagged revenues and average revenues from the
previous year of the industry to proxy for expected revenues.
They circumvent the missing data problem by including dummy
variables for choice occasions on which there were no trips in
the sample period used to construct the proxy. Interestingly, they
include the coefficient of variation to reflect risk preferences and
to conclude that the positive sign suggests risk-loving behavior.
Equally plausible is skewness-loving behavior. If the true data
generating process (dgp) is gamma, for instance, the coefficient
of variation is equal to two times the skewness coefficient.

15 The exception, of course, is for the beginning of a data set
when there are fewer than two observations.

series techniques.16 Implicitly, these models
assume that the underlying revenue distri-
bution is fixed but that recent observations
provide more information on shocks to the
system than old information. Thus, they are
no more consistent with what we know about
the bioeconomics than other methods dis-
cussed so far, though they may be use-
ful for prediction. Unfortunately, time-series
data rarely exist on a daily basis without gaps;
in most cases gaps appear in the data due to
limited fishing activity in some locations.

No matter what belief variable specifica-
tions are chosen, the analyst is faced with for-
mulating a statistical model that is, at best,
an approximation of a nonstationary stochas-
tic process that changes on a very small time
scale. Methods for incorporating information
decay or for truncating the data set are both
imperfect attempts to match a tractable time
scale to the actual time scale of the revenue
generation process. With the exception of the
Bayesian methods, the approaches discussed
so far either do not make explicit distribu-
tional assumptions or do not assume normal-
ity; they are all variants on a least squares
estimator. However, revenues are likely bet-
ter characterized by some other distribution.
These problems are confounded by repeating
seasonal patterns. Wilson refers to the differ-
ent information types as coarse-grained and
fine-grained. The former captures seasonal
information that is often common knowledge
in the fishery, while the latter is idiosyncratic
knowledge that is potentially proprietary in
nature. This separation poses further prob-
lems for information-decay modeling, calling
into question geometrically declining weights
and simple truncations.17

The problem of unobserved and possi-
bly changing quality of a location is also
extremely important in the recreation

16 Though motivated by the Bayesian framework, Eales and
Eales and Wilen regress catch on lagged catch (catch from the
previous day) to obtain a model for expected catch, which they
combine with price to form an expected profit measure included
in the discrete choice location choice model. Implicitly this model
assumes constant steady-state catch with short-run shocks that
die off geometrically. Dupont applies ARIMA models to fore-
cast prices that are then combined with a profit maximization
model to generate expected profits for the discrete choice loca-
tion model. In her analysis, the fish stock is treated as known
and nonstochastic. While it may be true that prices vary accord-
ing to some stationary stochastic process, the forces that affect
abundance of a resource are likely nonstationary and possibly
chaotic.

17 Using a truncation approach, Holland and Sutinen also
account for coarse- and fine-grained information by including
separate terms in their regressions to summarize recent and pre-
vious year revenues.
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demand literature. Numerous authors con-
fronted this problem in the context of study-
ing angler location choice when expected
catch is unknown, but solutions either assume
a fixed distribution or use an ad hoc
decay structure.18 Recent work in recreation
demand investigated preference heterogene-
ity over site quality without resolving the
unobservable quality issue.19 Such papers
raise the question: do individual agents really
have different preferences or do they simply
have different beliefs about site quality?20

To explore this issue, let us return to the
harvest notation in equation (8) and let us
suppose, for simplicity, that indirect utility is
a linear function of expected revenue. Make
the parameter α random to denote prefer-
ence heterogeneity such that α = ᾱ + ηi

and ηi ∼ N(0� σ2
η). Suppose that the analyst

includes the same expected revenue variable
for all agents in the model, i.e., Rijt = Rjt.
Thus, utility is

Uijt = (ᾱ+ ηi)E[Rjt] + εijt�(12)

However, if agents are actually the same and
have different information sets, one might
falsely conclude that there is preference
heterogeneity. Assume E[Rijt] = E[Rjt] +
ζij and ζij ∼ N(0� σ2

ζj ). The true model would
be

Uijt = α
(
E[Rjt] + ζij

)+ εijt�(13)

Though different models, the specification
in (12) might pick up the variance in revenues
as a random parameter.

18 Several examples include Bockstael, McConnell, and Strand;
Morey, Shaw, and Rowe; and Provencher and Bishop. McConnell,
Strand, and Blake-Hedges provide a useful summary of different
ad hoc approaches in the literature and argue in favor of model-
ing catch with a Poisson process, though implicitly they assume
a fixed distribution. Following this method, Morey and Waldman
emphasize the random nature of catch and argue that models
using average observed catch in location choice regressions will
suffer from an errors-in-variables problem.

19 Train calculates fish stock as a weighted average of stream
segments from the Montana River information system, assumes
that the fish stock is known to anglers, and proceeds to estimate
taste parameters that vary across individuals in the sample. Chen
and Cosslett construct a salmon variable that is site and time
specific and also allow for taste heterogeneity.

20 This issue is similar to the question of state dependence or
heterogeneity that has a long history in the labor literature and
a growing interest in the marketing literature. There are numer-
ous empirical labor supply studies that analyze state dependence
and heterogeneity. A particularly useful exposition is Heckman,
which discusses these issues conceptually. In the marketing liter-
ature, Erdem and Keane and Keane provide good examples.

Spatial Search and Information Sharing

This paper so far focused on choice mod-
eling issues assuming that information is
individual-specific and taken as given but not
sought out by harvesters. The models thus
ignore the possibility that fishers may make
decisions to gather information purposefully,
not just choose a location that is most prof-
itable in the short run. This raises the issue of
optimal search.21 The appropriate analytical
framework would be dynamic optimization.
An immediate difficulty is that the search
phase and the harvest phase are not distinct.
The process of harvesting leads to more infor-
mation, so the decision about where to go
must weight the value of potential informa-
tion with the value of potential harvest.22 This,
then, introduces the possibility that informa-
tion is endogenous.

The problem may not actually be as
severe in marine fisheries, since there are
reasons that fishers might not undertake
this intertemporal optimization. Harvesters
might be myopic about gathering informa-
tion because information is ephemeral. Thus,
the opportunity cost of searching in unfa-
miliar areas rather than harvesting in well-
known areas is high. In addition, the stylized
race for fish still persists in many marine fish-
eries, so once an abundant place is found,
harvesters cannot bank the information and
continue searching. Instead, they must drop
their search efforts and begin harvesting.
Similarly, the incentives to share informa-
tion are mixed. The ephemeral nature of
information motivates harvesters to cooper-
ate because individual fishers may not possess
sufficient capacity to harvest an abundant
area before it becomes unattractive.23 Yet, the
open access characteristic of many fisheries
provides a disincentive to share information.

While conflicting forces make the payoff
from information sharing ambiguous, identi-
fying evidence of shared information from
observed choices promises to be even more

21 The classic text in statistics is DeGroot. Most works on search
in economics deal with where to look first, e.g., Weitzman, how to
formulate search rules, e.g., Morgan and Manning, or empirically
when to terminate a search, e.g., Wolpin.

22 For discussions of the way that optimal search (rather than
random search) affects the observed data, see Mangel and
Walters.

23 For instance, sea urchins are most valuable just prior to
spawning, and there is geographic spawning heterogeneity in
California. An individual diver who locates ripe urchin may not
be able to harvest it all before spawing takes place and might be
willing to share the location with other divers in exchange for
information about good locations in the future.
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difficult. Wilson recognizes these conflicting
forces and discusses the ways that harvesters
form networks and share information, but an
empirical road map remains elusive. Return-
ing one last time to the urn and ball exper-
iment, imagine that there are 100 subjects,
each of whom has drawn from the urns.
Now, suppose that the experimenter allows
the subjects to talk with one another and
to discuss their draws. How might one track
the flow of information and the way it
affects individual beliefs? One possibility is
to assume that all information is transmitted
to everyone. That is, all data become pub-
lic. Though arguably unrealistic, this is the
most tractable way to approach the problem.
A more challenging prospect is to observe
which subjects communicate and then merge
these subjects’ data sets to calculate expected
revenues.24 There is some hope that we can
isolate information networks with real world
data. When individuals are licensed in a fish-
ery rather than boats, the analyst can con-
struct networks based on harvesters who
have been on the same boat together. This
is the case in California’s sea urchin fishery.
The assumption is that individuals on boats
together are forthcoming with their private
information.

Conclusions

Discrete choice modeling of fishing location
tries to resolve simultaneously behavioral
responses to information, what this informa-
tion is, and the way that the information is
gathered and processed. Without observing
the process itself, the modeler really only sees
choices and revenue (or catch) histories. We
cannot separate how these histories are com-
bined into measures of profitability and how
these measures affect choice. This paper dis-
cussed two fundamentally different attempts
to resolve questions about information. The
author concludes that structural attempts are
essentially intractable in every setting, and
reduced-form methods are by nature ad hoc.
Nevertheless, some hope lies in reduced-form
methods. A conclusion of the first section is
that even ad hoc approaches to information
processing should account for sampling vari-
ance in addition to variance of the underlying
stochastic process. Of the methods discussed,

24 See Eales and Eales and Wilen for other methods of identi-
fying groups that share information.

the Bayesian approach with a realistic prob-
ability model seems most compelling but is
also the most difficult to implement. In con-
trast, it is much less clear how best to model
the decay of information.

Though tractability problems and the
unknown nature of information decay do not
bode well for testing hypotheses about pref-
erence heterogeneity, risk aversion of har-
vesters, intertemporal search behavior, and
information sharing, discrete choice models
of fisher behavior are still valuable. These
models may not resolve deep economic ques-
tions about optimizing behavior, but when ad
hoc assumptions are chosen carefully, they
should still provide insight. Moreover, mod-
els that predict well, especially if they do well
out-of-sample, can be used for policy analy-
sis. If methods used to calculate explanatory
variables lead to covariates that are highly
correlated with the true covariates, estimated
parameters will scale the indirect utilities in
a way that still generates reasonable predic-
tions. This is precisely what is needed in sim-
ulating spatial management options: a model
that matches the daily time scale and discrete
spatial scale and that successfully translates
observables into behavioral predictions.

The outlook, unfortunately, is more bleak
for modeling the isomorphic recreation site
choice problem. Here, it is essential to iden-
tify the connection between unobservable
site quality and behavior because the ulti-
mate aim is often to obtain estimates of
welfare changes due to quality changes. How-
ever, without a reliable method that maps
observable quality indicators into beliefs
about site quality, welfare estimates derived
from discrete choice behavioral models are
problematic.
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